On separable abelian p-groups
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 467-479.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

An S-ring (a Schur ring) is said to be separable with respect to a class of groups K if every algebraic isomorphism from the S-ring in question to an S-ring over a group from K is induced by a combinatorial isomorphism. A finite group is said to be separable with respect to K if every S-ring over this group is separable with respect to K. We provide a complete classification of abelian p-groups separable with respect to the class of abelian groups.
DOI : 10.26493/1855-3974.1892.78f
Keywords: Isomorphisms, Schur rings, p-groups
@article{10_26493_1855_3974_1892_78f,
     author = {Grigory Ryabov},
     title = {On separable abelian p-groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {467--479},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1892.78f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1892.78f/}
}
TY  - JOUR
AU  - Grigory Ryabov
TI  - On separable abelian p-groups
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 467
EP  - 479
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1892.78f/
DO  - 10.26493/1855-3974.1892.78f
LA  - en
ID  - 10_26493_1855_3974_1892_78f
ER  - 
%0 Journal Article
%A Grigory Ryabov
%T On separable abelian p-groups
%J Ars Mathematica Contemporanea
%D 2019
%P 467-479
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1892.78f/
%R 10.26493/1855-3974.1892.78f
%G en
%F 10_26493_1855_3974_1892_78f
Grigory Ryabov. On separable abelian p-groups. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 467-479. doi : 10.26493/1855-3974.1892.78f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1892.78f/

Cité par Sources :