The tomotope
Ars Mathematica Contemporanea, Tome 5 (2012) no. 2, pp. 355-370.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Every abstract 3-polytope M, in particular, every polyhedral map, has a unique minimal regular cover, and the automorphism group of this cover is isomorphic to the monodromy group of M. Here we demonstrate that the situation for polytopes of higher rank must be very different: the tomotope T is a small, highly involved, abstract uniform 4-polytope. It has infinitely many distinct minimal regular covers.
DOI : 10.26493/1855-3974.189.e64
Keywords: Abstract regular or uniform polytopes
@article{10_26493_1855_3974_189_e64,
     author = {Barry Monson and Daniel Pellicer and Gordon Williams},
     title = {The tomotope},
     journal = {Ars Mathematica Contemporanea},
     pages = {355--370},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.26493/1855-3974.189.e64},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.189.e64/}
}
TY  - JOUR
AU  - Barry Monson
AU  - Daniel Pellicer
AU  - Gordon Williams
TI  - The tomotope
JO  - Ars Mathematica Contemporanea
PY  - 2012
SP  - 355
EP  - 370
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.189.e64/
DO  - 10.26493/1855-3974.189.e64
LA  - en
ID  - 10_26493_1855_3974_189_e64
ER  - 
%0 Journal Article
%A Barry Monson
%A Daniel Pellicer
%A Gordon Williams
%T The tomotope
%J Ars Mathematica Contemporanea
%D 2012
%P 355-370
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.189.e64/
%R 10.26493/1855-3974.189.e64
%G en
%F 10_26493_1855_3974_189_e64
Barry Monson; Daniel Pellicer; Gordon Williams. The tomotope. Ars Mathematica Contemporanea, Tome 5 (2012) no. 2, pp. 355-370. doi : 10.26493/1855-3974.189.e64. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.189.e64/

Cité par Sources :