The finite embeddability property for IP loops and local embeddability of groups into finite IP loops
Ars mathematica contemporanea, Tome 17 (2019) no. 2, pp. 535-554 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

We prove that the class of all loops with the inverse property (IP loops) has the Finite Embeddability Property (FEP). As a consequence, every group is locally embeddable into finite IP loops. The first one of these results is obtained as a consequence of a more general embeddability theorem, contributing to a list of problems posed by T. Evans in 1978, namely, that every finite partial IP loop can be embedded into a finite IP loop.
DOI : 10.26493/1855-3974.1884.5cb
Keywords: Group, IP loop, finite embeddability property, local embeddability
@article{10_26493_1855_3974_1884_5cb,
     author = {Martin Vodi\v{c}ka and Pavol Zlato\v{s}},
     title = {
		{The} finite embeddability property for {IP} loops and local embeddability of groups into finite {IP} loops
	},
     journal = {Ars mathematica contemporanea},
     pages = {535--554},
     year = {2019},
     volume = {17},
     number = {2},
     doi = {10.26493/1855-3974.1884.5cb},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1884.5cb/}
}
TY  - JOUR
AU  - Martin Vodička
AU  - Pavol Zlatoš
TI  - The finite embeddability property for IP loops and local embeddability of groups into finite IP loops
	
JO  - Ars mathematica contemporanea
PY  - 2019
SP  - 535
EP  - 554
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1884.5cb/
DO  - 10.26493/1855-3974.1884.5cb
LA  - en
ID  - 10_26493_1855_3974_1884_5cb
ER  - 
%0 Journal Article
%A Martin Vodička
%A Pavol Zlatoš
%T The finite embeddability property for IP loops and local embeddability of groups into finite IP loops
	
%J Ars mathematica contemporanea
%D 2019
%P 535-554
%V 17
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1884.5cb/
%R 10.26493/1855-3974.1884.5cb
%G en
%F 10_26493_1855_3974_1884_5cb
Martin Vodička; Pavol Zlatoš. The finite embeddability property for IP loops and local embeddability of groups into finite IP loops. Ars mathematica contemporanea, Tome 17 (2019) no. 2, pp. 535-554. doi: 10.26493/1855-3974.1884.5cb

Cité par Sources :