The finite embeddability property for IP loops and local embeddability of groups into finite IP loops
Ars mathematica contemporanea, Tome 17 (2019) no. 2, pp. 535-554
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We prove that the class of all loops with the inverse property (IP loops) has the Finite Embeddability Property (FEP). As a consequence, every group is locally embeddable into finite IP loops. The first one of these results is obtained as a consequence of a more general embeddability theorem, contributing to a list of problems posed by T. Evans in 1978, namely, that every finite partial IP loop can be embedded into a finite IP loop.
Keywords:
Group, IP loop, finite embeddability property, local embeddability
@article{10_26493_1855_3974_1884_5cb,
author = {Martin Vodi\v{c}ka and Pavol Zlato\v{s}},
title = {
{The} finite embeddability property for {IP} loops and local embeddability of groups into finite {IP} loops
},
journal = {Ars mathematica contemporanea},
pages = {535--554},
year = {2019},
volume = {17},
number = {2},
doi = {10.26493/1855-3974.1884.5cb},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1884.5cb/}
}
TY - JOUR AU - Martin Vodička AU - Pavol Zlatoš TI - The finite embeddability property for IP loops and local embeddability of groups into finite IP loops JO - Ars mathematica contemporanea PY - 2019 SP - 535 EP - 554 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1884.5cb/ DO - 10.26493/1855-3974.1884.5cb LA - en ID - 10_26493_1855_3974_1884_5cb ER -
%0 Journal Article %A Martin Vodička %A Pavol Zlatoš %T The finite embeddability property for IP loops and local embeddability of groups into finite IP loops %J Ars mathematica contemporanea %D 2019 %P 535-554 %V 17 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1884.5cb/ %R 10.26493/1855-3974.1884.5cb %G en %F 10_26493_1855_3974_1884_5cb
Martin Vodička; Pavol Zlatoš. The finite embeddability property for IP loops and local embeddability of groups into finite IP loops. Ars mathematica contemporanea, Tome 17 (2019) no. 2, pp. 535-554. doi: 10.26493/1855-3974.1884.5cb
Cité par Sources :