Distinguishing numbers of finite 4-valent vertex-transitive graphs
Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 173-187.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The distinguishing number of a graph G is the smallest k such that G admits a k-colouring for which the only colour-preserving automorphism of G is the identity. We determine the distinguishing number of finite 4-valent vertex-transitive graphs. We show that, apart from one infinite family and finitely many examples, they all have distinguishing number 2.
DOI : 10.26493/1855-3974.1849.148
Keywords: Vertex colouring, symmetry breaking in graph, distinguishing number, vertex-transitive graphs
@article{10_26493_1855_3974_1849_148,
     author = {Florian Lehner and Gabriel Verret},
     title = {Distinguishing numbers of finite 4-valent vertex-transitive graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {173--187},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.1849.148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1849.148/}
}
TY  - JOUR
AU  - Florian Lehner
AU  - Gabriel Verret
TI  - Distinguishing numbers of finite 4-valent vertex-transitive graphs
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 173
EP  - 187
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1849.148/
DO  - 10.26493/1855-3974.1849.148
LA  - en
ID  - 10_26493_1855_3974_1849_148
ER  - 
%0 Journal Article
%A Florian Lehner
%A Gabriel Verret
%T Distinguishing numbers of finite 4-valent vertex-transitive graphs
%J Ars Mathematica Contemporanea
%D 2020
%P 173-187
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1849.148/
%R 10.26493/1855-3974.1849.148
%G en
%F 10_26493_1855_3974_1849_148
Florian Lehner; Gabriel Verret. Distinguishing numbers of finite 4-valent vertex-transitive graphs. Ars Mathematica Contemporanea, Tome 19 (2020) no. 2, pp. 173-187. doi : 10.26493/1855-3974.1849.148. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1849.148/

Cité par Sources :