Reconfiguring vertex colourings of 2-trees
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 653-698.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let H be a graph and let k ≥ χ(H) be an integer. The k-colouring graph of H, denoted Gk(H), is the graph whose vertex set consists of all proper k-vertex-colourings (or simply k-colourings) of H using colours {1, 2, …, k}; two vertices of Gk(H) are adjacent if and only if the corresponding k-colourings differ in colour on exactly one vertex of H. If Gk(H) has a Hamilton cycle, then H is said to have a Gray code of k-colourings, and the Gray code number of H is the least integer k0(H) such that Gk(H) has a Gray code of k-colourings for all k ≥ k0(H). Choo and MacGillivray determine the Gray code numbers of trees. We extend this result to 2-trees. A 2-tree is constructed recursively by starting with a complete graph on three vertices and connecting each new vertex to an existing clique on two vertices. We prove that if H is a 2-tree, then k0(H) = 4 unless H is isomorphic to the join of a tree T and a vertex u, where T is a star on at least three vertices, or the bipartition of T has two even parts; in these cases, k0(H) = 5.
DOI : 10.26493/1855-3974.1813.7ae
Keywords: 2-trees, graph colouring, Gray codes, Hamilton cycles, reconfiguration problems
@article{10_26493_1855_3974_1813_7ae,
     author = {Michael Cavers and Karen Seyffarth},
     title = {Reconfiguring vertex colourings of 2-trees},
     journal = {Ars Mathematica Contemporanea},
     pages = {653--698},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1813.7ae},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1813.7ae/}
}
TY  - JOUR
AU  - Michael Cavers
AU  - Karen Seyffarth
TI  - Reconfiguring vertex colourings of 2-trees
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 653
EP  - 698
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1813.7ae/
DO  - 10.26493/1855-3974.1813.7ae
LA  - en
ID  - 10_26493_1855_3974_1813_7ae
ER  - 
%0 Journal Article
%A Michael Cavers
%A Karen Seyffarth
%T Reconfiguring vertex colourings of 2-trees
%J Ars Mathematica Contemporanea
%D 2019
%P 653-698
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1813.7ae/
%R 10.26493/1855-3974.1813.7ae
%G en
%F 10_26493_1855_3974_1813_7ae
Michael Cavers; Karen Seyffarth. Reconfiguring vertex colourings of 2-trees. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 653-698. doi : 10.26493/1855-3974.1813.7ae. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1813.7ae/

Cité par Sources :