On the rank two geometries of the groups PSL(2, q): part II
Ars Mathematica Contemporanea, Tome 6 (2013) no. 2, pp. 365-388.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We determine all firm and residually connected rank 2 geometries on which PSL(2, q) acts flag-transitively, residually weakly primitively and locally two-transitively, in which one of the maximal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2, qʹ) or PGL(2, qʹ), where qʹ divides q, for some prime-power q.
DOI : 10.26493/1855-3974.181.59e
Keywords: Projective special linear groups, coset geometries, locally s-arc-transitive graphs
@article{10_26493_1855_3974_181_59e,
     author = {Francis Buekenhout and Julie De Saedeleer and Dimitri Leemans},
     title = {On the rank two geometries of the groups {PSL(2,} q): part {II}},
     journal = {Ars Mathematica Contemporanea},
     pages = {365--388},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     doi = {10.26493/1855-3974.181.59e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.181.59e/}
}
TY  - JOUR
AU  - Francis Buekenhout
AU  - Julie De Saedeleer
AU  - Dimitri Leemans
TI  - On the rank two geometries of the groups PSL(2, q): part II
JO  - Ars Mathematica Contemporanea
PY  - 2013
SP  - 365
EP  - 388
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.181.59e/
DO  - 10.26493/1855-3974.181.59e
LA  - en
ID  - 10_26493_1855_3974_181_59e
ER  - 
%0 Journal Article
%A Francis Buekenhout
%A Julie De Saedeleer
%A Dimitri Leemans
%T On the rank two geometries of the groups PSL(2, q): part II
%J Ars Mathematica Contemporanea
%D 2013
%P 365-388
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.181.59e/
%R 10.26493/1855-3974.181.59e
%G en
%F 10_26493_1855_3974_181_59e
Francis Buekenhout; Julie De Saedeleer; Dimitri Leemans. On the rank two geometries of the groups PSL(2, q): part II. Ars Mathematica Contemporanea, Tome 6 (2013) no. 2, pp. 365-388. doi : 10.26493/1855-3974.181.59e. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.181.59e/

Cité par Sources :