HL-index of a graph
Ars Mathematica Contemporanea, Tome 5 (2012) no. 1, pp. 99-105.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let G be a simple, connected graph with n vertices and eigenvalues λ1 > λ2 ≥ … ≥ λn. If n is even, define H = n/2 and L = H + 1. If n is odd, define H = L = (n + 1)/2. Define the HL-index of G to be R(G) = max(|λH|, |λL|). The eigenvalues λH and λL appear in chemical graph theory in the study of molecular stability. In this paper, bounds on HL-index for chemical and general graphs are studied. It is shown that there exist graphs with arbitrarily large HL-index.
DOI : 10.26493/1855-3974.180.65e
Keywords: HL-index, graph spectrum, HOMO-LUMO map
@article{10_26493_1855_3974_180_65e,
     author = {Ga\v{s}per Jakli\v{c} and Patrick W. Fowler and Toma\v{z} Pisanski},
     title = {HL-index of a graph},
     journal = {Ars Mathematica Contemporanea},
     pages = {99--105},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.26493/1855-3974.180.65e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.180.65e/}
}
TY  - JOUR
AU  - Gašper Jaklič
AU  - Patrick W. Fowler
AU  - Tomaž Pisanski
TI  - HL-index of a graph
JO  - Ars Mathematica Contemporanea
PY  - 2012
SP  - 99
EP  - 105
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.180.65e/
DO  - 10.26493/1855-3974.180.65e
LA  - en
ID  - 10_26493_1855_3974_180_65e
ER  - 
%0 Journal Article
%A Gašper Jaklič
%A Patrick W. Fowler
%A Tomaž Pisanski
%T HL-index of a graph
%J Ars Mathematica Contemporanea
%D 2012
%P 99-105
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.180.65e/
%R 10.26493/1855-3974.180.65e
%G en
%F 10_26493_1855_3974_180_65e
Gašper Jaklič; Patrick W. Fowler; Tomaž Pisanski. HL-index of a graph. Ars Mathematica Contemporanea, Tome 5 (2012) no. 1, pp. 99-105. doi : 10.26493/1855-3974.180.65e. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.180.65e/

Cité par Sources :