Sums of r-Lah numbers and r-Lah polynomials
Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 211-222.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The total number of partitions of a finite set into nonempty ordered subsets such that r distinguished elements belong to distinct ordered blocks can be described as sums of r-Lah numbers. In this paper we study this possible variant of Bell-like numbers, as well as the related r-Lah polynomials.
DOI : 10.26493/1855-3974.1793.c4d
Keywords: Summed r-Lah numbers, r-Lah polynomials
@article{10_26493_1855_3974_1793_c4d,
     author = {G\'abor Nyul and Gabriella R\'acz},
     title = {Sums of {r-Lah} numbers and {r-Lah} polynomials},
     journal = {Ars Mathematica Contemporanea},
     pages = {211--222},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2020},
     doi = {10.26493/1855-3974.1793.c4d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1793.c4d/}
}
TY  - JOUR
AU  - Gábor Nyul
AU  - Gabriella Rácz
TI  - Sums of r-Lah numbers and r-Lah polynomials
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 211
EP  - 222
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1793.c4d/
DO  - 10.26493/1855-3974.1793.c4d
LA  - en
ID  - 10_26493_1855_3974_1793_c4d
ER  - 
%0 Journal Article
%A Gábor Nyul
%A Gabriella Rácz
%T Sums of r-Lah numbers and r-Lah polynomials
%J Ars Mathematica Contemporanea
%D 2020
%P 211-222
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1793.c4d/
%R 10.26493/1855-3974.1793.c4d
%G en
%F 10_26493_1855_3974_1793_c4d
Gábor Nyul; Gabriella Rácz. Sums of r-Lah numbers and r-Lah polynomials. Ars Mathematica Contemporanea, Tome 18 (2020) no. 2, pp. 211-222. doi : 10.26493/1855-3974.1793.c4d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1793.c4d/

Cité par Sources :