On list-coloring extendable outerplanar graphs
Ars Mathematica Contemporanea, Tome 5 (2012) no. 1, pp. 175-188.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We investigate a variation on Thomassen's 2- and 3-extendability of precoloring extensions for list-coloring graphs. For an outerplanar graph G with i, j ≤ 2, we say that G is {i, j}-extendable if for every pair of nonadjacent vertices x and y, whenever x is assigned an i-list, y is assigned a j-list, and all other vertices have a 3-list, G is list-colorable. We characterize the {1, 1}- and the {1, 2}-extendable outerplanar graphs and prove that every outerplanar graph is {2, 2}-extendable.
DOI : 10.26493/1855-3974.179.189
Keywords: Graph List-Coloring, Coloring Extendability, Outerplanar Graphs
@article{10_26493_1855_3974_179_189,
     author = {Joan P. Hutchinson},
     title = {On list-coloring extendable outerplanar graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.26493/1855-3974.179.189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.179.189/}
}
TY  - JOUR
AU  - Joan P. Hutchinson
TI  - On list-coloring extendable outerplanar graphs
JO  - Ars Mathematica Contemporanea
PY  - 2012
SP  - 175
EP  - 188
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.179.189/
DO  - 10.26493/1855-3974.179.189
LA  - en
ID  - 10_26493_1855_3974_179_189
ER  - 
%0 Journal Article
%A Joan P. Hutchinson
%T On list-coloring extendable outerplanar graphs
%J Ars Mathematica Contemporanea
%D 2012
%P 175-188
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.179.189/
%R 10.26493/1855-3974.179.189
%G en
%F 10_26493_1855_3974_179_189
Joan P. Hutchinson. On list-coloring extendable outerplanar graphs. Ars Mathematica Contemporanea, Tome 5 (2012) no. 1, pp. 175-188. doi : 10.26493/1855-3974.179.189. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.179.189/

Cité par Sources :