On identities of Watson type
Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 277-290.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We prove several identities of the type α(n) = Σk=0n β((n − k(k + 1)/2) / 2). Here, the functions α(n) and β(n) count partitions with certain restrictions or the number of parts in certain partitions. Since Watson proved the identity for α(n) = Q(n), the number of partitions of n into distinct parts, and β(n) = p(n), Euler’s partition function, we refer to these identities as Watson type identities. Our work is motivated by results of G. E. Andrews and the second author who recently discovered and proved new Euler type identities. We provide analytic proofs and explain how one could construct bijective proofs of our results.
DOI : 10.26493/1855-3974.1782.127
Keywords: Partitions, combinatorial identities, bijective combinatorics
@article{10_26493_1855_3974_1782_127,
     author = {Cristina Ballantine and Mircea Merca},
     title = {On identities of {Watson} type},
     journal = {Ars Mathematica Contemporanea},
     pages = {277--290},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1782.127},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1782.127/}
}
TY  - JOUR
AU  - Cristina Ballantine
AU  - Mircea Merca
TI  - On identities of Watson type
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 277
EP  - 290
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1782.127/
DO  - 10.26493/1855-3974.1782.127
LA  - en
ID  - 10_26493_1855_3974_1782_127
ER  - 
%0 Journal Article
%A Cristina Ballantine
%A Mircea Merca
%T On identities of Watson type
%J Ars Mathematica Contemporanea
%D 2019
%P 277-290
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1782.127/
%R 10.26493/1855-3974.1782.127
%G en
%F 10_26493_1855_3974_1782_127
Cristina Ballantine; Mircea Merca. On identities of Watson type. Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 277-290. doi : 10.26493/1855-3974.1782.127. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1782.127/

Cité par Sources :