The Möbius function of PSU(3, 2^2^n)
Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 377-401.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let G be the simple group PSU(3, 22n), n > 0. For any subgroup H of G, we compute the Möbius function μL(H, G) of H in the subgroup lattice L of G, and the Möbius function μL̄([H], [G]) of [H] in the poset L̄ of conjugacy classes of subgroups of G. For any prime p, we provide the Euler characteristic of the order complex of the poset of non-trivial p-subgroups of G.
DOI : 10.26493/1855-3974.1765.d73
Keywords: Unitary groups, Möbius function, subgroup lattice
@article{10_26493_1855_3974_1765_d73,
     author = {Giovanni Zini},
     title = {The {M\"obius} function of {PSU(3,} 2^2^n)},
     journal = {Ars Mathematica Contemporanea},
     pages = {377--401},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1765.d73},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1765.d73/}
}
TY  - JOUR
AU  - Giovanni Zini
TI  - The Möbius function of PSU(3, 2^2^n)
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 377
EP  - 401
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1765.d73/
DO  - 10.26493/1855-3974.1765.d73
LA  - en
ID  - 10_26493_1855_3974_1765_d73
ER  - 
%0 Journal Article
%A Giovanni Zini
%T The Möbius function of PSU(3, 2^2^n)
%J Ars Mathematica Contemporanea
%D 2019
%P 377-401
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1765.d73/
%R 10.26493/1855-3974.1765.d73
%G en
%F 10_26493_1855_3974_1765_d73
Giovanni Zini. The Möbius function of PSU(3, 2^2^n). Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 377-401. doi : 10.26493/1855-3974.1765.d73. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1765.d73/

Cité par Sources :