Symplectic semifield spreads of PG(5, q^t), q even
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 515-524.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let q > 2 ⋅ 34t be even. We prove that the only symplectic semifield spread of PG(5, qt), whose associate semifield has center containing Fq, is the Desarguesian spread. Equivalently, a commutative semifield of order q3t, with middle nucleus containing Fqt and center containing Fq, is a field. We do that by proving that the only possible Fq-linear set of rank 3t in PG(5, qt) disjoint from the secant variety of the Veronese surface is a plane of PG(5, qt).
DOI : 10.26493/1855-3974.1763.6cb
Keywords: Semifields, spreads, symplectic polarity, linear sets, Veronese variety
@article{10_26493_1855_3974_1763_6cb,
     author = {Valentina Pepe},
     title = {Symplectic semifield spreads of {PG(5,} q^t), q even},
     journal = {Ars Mathematica Contemporanea},
     pages = {515--524},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1763.6cb},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1763.6cb/}
}
TY  - JOUR
AU  - Valentina Pepe
TI  - Symplectic semifield spreads of PG(5, q^t), q even
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 515
EP  - 524
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1763.6cb/
DO  - 10.26493/1855-3974.1763.6cb
LA  - en
ID  - 10_26493_1855_3974_1763_6cb
ER  - 
%0 Journal Article
%A Valentina Pepe
%T Symplectic semifield spreads of PG(5, q^t), q even
%J Ars Mathematica Contemporanea
%D 2019
%P 515-524
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1763.6cb/
%R 10.26493/1855-3974.1763.6cb
%G en
%F 10_26493_1855_3974_1763_6cb
Valentina Pepe. Symplectic semifield spreads of PG(5, q^t), q even. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 515-524. doi : 10.26493/1855-3974.1763.6cb. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1763.6cb/

Cité par Sources :