Graphs with chromatic numbers strictly less than their colouring numbers
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 25-27.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The colouring number of a graph G, defined as col(G) = 1+ maxH ⊆ G δ(H), is an upper bound for its chromatic number. In this note, we prove that it is NP-complete to determine whether an arbitrary graph G has chromatic number strictly less than its colouring number.
DOI : 10.26493/1855-3974.176.704
Keywords: Chromatic number, colouring number, Szekeres-Wilf inequality, NP-completeness
@article{10_26493_1855_3974_176_704,
     author = {Xuding Zhu},
     title = {Graphs with chromatic numbers strictly less than their colouring numbers},
     journal = {Ars Mathematica Contemporanea},
     pages = {25--27},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.176.704},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.176.704/}
}
TY  - JOUR
AU  - Xuding Zhu
TI  - Graphs with chromatic numbers strictly less than their colouring numbers
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 25
EP  - 27
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.176.704/
DO  - 10.26493/1855-3974.176.704
LA  - en
ID  - 10_26493_1855_3974_176_704
ER  - 
%0 Journal Article
%A Xuding Zhu
%T Graphs with chromatic numbers strictly less than their colouring numbers
%J Ars Mathematica Contemporanea
%D 2011
%P 25-27
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.176.704/
%R 10.26493/1855-3974.176.704
%G en
%F 10_26493_1855_3974_176_704
Xuding Zhu. Graphs with chromatic numbers strictly less than their colouring numbers. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 25-27. doi : 10.26493/1855-3974.176.704. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.176.704/

Cité par Sources :