Top-heavy phenomena for transformations
Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article no. 09, 26 p.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let S be a transformation semigroup acting on a set Ω. The action of S on Ω can be naturally extended to be an action on all subsets of Ω. We say that S is ℓ-homogeneous provided it can send A to B for any two (not necessarily distinct) ℓ-subsets A and B of Ω. On the condition that k ≤ ℓ  k + ℓ ≤ |Ω|, we show that every ℓ-homogeneous transformation semigroup acting on Ω must be k-homogeneous. We report other variants of this result for Boolean semirings and affine/projective geometries. In general, any semigroup action on a poset gives rise to an automaton and we associate some sequences of integers with the phase space of this automaton. When this poset is a geometric lattice, we propose to investigate various possible regularity properties of these sequences, especially the so-called top-heavy property. In the course of this study, we are led to a conjecture about the injectivity of the incidence operator of a geometric lattice, generalizing a conjecture of Kung.
DOI : 10.26493/1855-3974.1753.52a
Keywords: Incidence operator, kernel space, rank, strong shape, valuated poset, weak shape
@article{10_26493_1855_3974_1753_52a,
     author = {Yaokun Wu and Yinfeng Zhu},
     title = {Top-heavy phenomena for transformations},
     journal = {Ars Mathematica Contemporanea},
     eid = {09},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2022},
     doi = {10.26493/1855-3974.1753.52a},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1753.52a/}
}
TY  - JOUR
AU  - Yaokun Wu
AU  - Yinfeng Zhu
TI  - Top-heavy phenomena for transformations
JO  - Ars Mathematica Contemporanea
PY  - 2022
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1753.52a/
DO  - 10.26493/1855-3974.1753.52a
LA  - en
ID  - 10_26493_1855_3974_1753_52a
ER  - 
%0 Journal Article
%A Yaokun Wu
%A Yinfeng Zhu
%T Top-heavy phenomena for transformations
%J Ars Mathematica Contemporanea
%D 2022
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1753.52a/
%R 10.26493/1855-3974.1753.52a
%G en
%F 10_26493_1855_3974_1753_52a
Yaokun Wu; Yinfeng Zhu. Top-heavy phenomena for transformations. Ars Mathematica Contemporanea, Tome 22 (2022) no. 4, article  no. 09, 26 p. doi : 10.26493/1855-3974.1753.52a. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1753.52a/

Cité par Sources :