More results on r-inflated graphs: Arboricity, thickness, chromatic number and fractional chromatic number
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 5-24.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The r-inflation of a graph G is the lexicographic product G with Kr. A graph is said to have thickness t if its edges can be partitioned into t sets, each of which induces a planar graph, and t is smallest possible. In the setting of the r-inflation of planar graphs, we investigate the generalization of Ringel's famous Earth-Moon problem: What is the largest chromatic number of any thickness-t graph? In particular, we study classes of planar graphs for which we can determine both the thickness and chromatic number of their 2-inflations, and provide bounds on these parameters for their r-inflations. Moreover, in the same setting, we investigate arboricity and fractional chromatic number as well. We end with a list of open questions.
DOI : 10.26493/1855-3974.175.b78
Keywords: r-inflation, thickness, chromatic number, fractional chromatic number, arboricity
@article{10_26493_1855_3974_175_b78,
     author = {Michael O. Albertson and Debra L. Boutin and Ellen Gethner},
     title = {More results on r-inflated graphs: {Arboricity,} thickness, chromatic number and fractional chromatic number},
     journal = {Ars Mathematica Contemporanea},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.175.b78},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.175.b78/}
}
TY  - JOUR
AU  - Michael O. Albertson
AU  - Debra L. Boutin
AU  - Ellen Gethner
TI  - More results on r-inflated graphs: Arboricity, thickness, chromatic number and fractional chromatic number
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 5
EP  - 24
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.175.b78/
DO  - 10.26493/1855-3974.175.b78
LA  - en
ID  - 10_26493_1855_3974_175_b78
ER  - 
%0 Journal Article
%A Michael O. Albertson
%A Debra L. Boutin
%A Ellen Gethner
%T More results on r-inflated graphs: Arboricity, thickness, chromatic number and fractional chromatic number
%J Ars Mathematica Contemporanea
%D 2011
%P 5-24
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.175.b78/
%R 10.26493/1855-3974.175.b78
%G en
%F 10_26493_1855_3974_175_b78
Michael O. Albertson; Debra L. Boutin; Ellen Gethner. More results on r-inflated graphs: Arboricity, thickness, chromatic number and fractional chromatic number. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 5-24. doi : 10.26493/1855-3974.175.b78. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.175.b78/

Cité par Sources :