Disjoint homometric sets in graphs
Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 1-4.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Two subsets of vertices in a graph are called homometric if the multisets of distances determined by them are the same. Let h(n) denote the largest number h such that any connected graph of n vertices contains two disjoint homometric subsets of size h. It is shown that (c log n)/(log log n) h(n) n/4, for n > 3.
DOI : 10.26493/1855-3974.174.027
Keywords: Graph distances, homometric subsets, Golumb ruler
@article{10_26493_1855_3974_174_027,
     author = {Michael O. Albertson and Janos Pach and Michael E. Young},
     title = {Disjoint homometric sets in graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {1--4},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.26493/1855-3974.174.027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.174.027/}
}
TY  - JOUR
AU  - Michael O. Albertson
AU  - Janos Pach
AU  - Michael E. Young
TI  - Disjoint homometric sets in graphs
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 1
EP  - 4
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.174.027/
DO  - 10.26493/1855-3974.174.027
LA  - en
ID  - 10_26493_1855_3974_174_027
ER  - 
%0 Journal Article
%A Michael O. Albertson
%A Janos Pach
%A Michael E. Young
%T Disjoint homometric sets in graphs
%J Ars Mathematica Contemporanea
%D 2011
%P 1-4
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.174.027/
%R 10.26493/1855-3974.174.027
%G en
%F 10_26493_1855_3974_174_027
Michael O. Albertson; Janos Pach; Michael E. Young. Disjoint homometric sets in graphs. Ars Mathematica Contemporanea, Tome 4 (2011) no. 1, pp. 1-4. doi : 10.26493/1855-3974.174.027. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.174.027/

Cité par Sources :