Types of triangle in Hamiltonian triangulations and an application to domination and k-walks
Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 51-66.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We investigate the minimum number t0(G) of faces in a Hamiltonian triangulation G so that any Hamiltonian cycle C of G has at least t0(G) faces that do not contain an edge of C. We prove upper and lower bounds on the maximum of these numbers for all triangulations with a fixed number of facial triangles. Such triangles play an important role when Hamiltonian cycles in triangulations with 3-cuts are constructed from smaller Hamiltonian cycles of 4-connected subgraphs. We also present results linking the number of these triangles to the length of 3-walks in a class of triangulation and to the domination number.
DOI : 10.26493/1855-3974.1733.8c6
Keywords: Graph, Hamiltonian cycle, domination, 3-walk
@article{10_26493_1855_3974_1733_8c6,
     author = {Gunnar Brinkmann and Kenta Ozeki and Nico Van Cleemput},
     title = {Types of triangle in {Hamiltonian} triangulations and an application to domination and k-walks},
     journal = {Ars Mathematica Contemporanea},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1733.8c6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1733.8c6/}
}
TY  - JOUR
AU  - Gunnar Brinkmann
AU  - Kenta Ozeki
AU  - Nico Van Cleemput
TI  - Types of triangle in Hamiltonian triangulations and an application to domination and k-walks
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 51
EP  - 66
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1733.8c6/
DO  - 10.26493/1855-3974.1733.8c6
LA  - en
ID  - 10_26493_1855_3974_1733_8c6
ER  - 
%0 Journal Article
%A Gunnar Brinkmann
%A Kenta Ozeki
%A Nico Van Cleemput
%T Types of triangle in Hamiltonian triangulations and an application to domination and k-walks
%J Ars Mathematica Contemporanea
%D 2019
%P 51-66
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1733.8c6/
%R 10.26493/1855-3974.1733.8c6
%G en
%F 10_26493_1855_3974_1733_8c6
Gunnar Brinkmann; Kenta Ozeki; Nico Van Cleemput. Types of triangle in Hamiltonian triangulations and an application to domination and k-walks. Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 51-66. doi : 10.26493/1855-3974.1733.8c6. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1733.8c6/

Cité par Sources :