A generalization of the parallelogram law to higher dimensions
Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 411-417.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We propose a generalization of the parallelogram identity in any dimension N ≥ 2, establishing the ratio of the quadratic mean of the diagonals to the quadratic mean of the faces of a parallelotope. The proof makes use of simple properties of the exterior product of vectors.
DOI : 10.26493/1855-3974.1704.34c
Keywords: Parallelogram law, parallelotope
@article{10_26493_1855_3974_1704_34c,
     author = {Alessandro Fonda},
     title = {A generalization of the parallelogram law to higher dimensions},
     journal = {Ars Mathematica Contemporanea},
     pages = {411--417},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1704.34c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1704.34c/}
}
TY  - JOUR
AU  - Alessandro Fonda
TI  - A generalization of the parallelogram law to higher dimensions
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 411
EP  - 417
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1704.34c/
DO  - 10.26493/1855-3974.1704.34c
LA  - en
ID  - 10_26493_1855_3974_1704_34c
ER  - 
%0 Journal Article
%A Alessandro Fonda
%T A generalization of the parallelogram law to higher dimensions
%J Ars Mathematica Contemporanea
%D 2019
%P 411-417
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1704.34c/
%R 10.26493/1855-3974.1704.34c
%G en
%F 10_26493_1855_3974_1704_34c
Alessandro Fonda. A generalization of the parallelogram law to higher dimensions. Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 411-417. doi : 10.26493/1855-3974.1704.34c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1704.34c/

Cité par Sources :