Some extensions of optimal stopping with financial applications
Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 465-472.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Finite horizon optimal stopping problems for Markov chains are a well researched topic. Frequently they are phrased in terms of cost or return because many financial models are based on Markov chains. In this paper we will apply optimal stopping to certain random walks on binary trees motivated by insurance considerations. The results are direct extensions of known results but the implications for insurance are of interest.
DOI : 10.26493/1855-3974.1699.74e
Keywords: Optimal stopping for Markov chains, equity-linked life insurance with guarantees
@article{10_26493_1855_3974_1699_74e,
     author = {Mihael Perman and Ana Zalokar},
     title = {Some extensions of optimal stopping with financial applications},
     journal = {Ars Mathematica Contemporanea},
     pages = {465--472},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1699.74e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1699.74e/}
}
TY  - JOUR
AU  - Mihael Perman
AU  - Ana Zalokar
TI  - Some extensions of optimal stopping with financial applications
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 465
EP  - 472
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1699.74e/
DO  - 10.26493/1855-3974.1699.74e
LA  - en
ID  - 10_26493_1855_3974_1699_74e
ER  - 
%0 Journal Article
%A Mihael Perman
%A Ana Zalokar
%T Some extensions of optimal stopping with financial applications
%J Ars Mathematica Contemporanea
%D 2019
%P 465-472
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1699.74e/
%R 10.26493/1855-3974.1699.74e
%G en
%F 10_26493_1855_3974_1699_74e
Mihael Perman; Ana Zalokar. Some extensions of optimal stopping with financial applications. Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 465-472. doi : 10.26493/1855-3974.1699.74e. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1699.74e/

Cité par Sources :