Incidence structures near configurations of type (n_3)
Ars Mathematica Contemporanea, Tome 19 (2020) no. 1, pp. 17-23.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

An (n3) configuration is an incidence structure equivalent to a linear hypergraph on n vertices which is both 3-regular and 3-uniform. We investigate a variant in which one constraint, say 3-regularity, is present, and we allow exactly one line to have size four, exactly one line to have size two, and all other lines to have size three. In particular, we study planar (Euclidean or projective) representations, settling the existence question and adapting Steinitz’ theorem for this setting.
DOI : 10.26493/1855-3974.1685.395
Keywords: Geometric configurations, incidence structures
@article{10_26493_1855_3974_1685_395,
     author = {Peter J. Dukes and Kaoruko Iwasaki},
     title = {Incidence structures near configurations of type (n_3)},
     journal = {Ars Mathematica Contemporanea},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2020},
     doi = {10.26493/1855-3974.1685.395},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1685.395/}
}
TY  - JOUR
AU  - Peter J. Dukes
AU  - Kaoruko Iwasaki
TI  - Incidence structures near configurations of type (n_3)
JO  - Ars Mathematica Contemporanea
PY  - 2020
SP  - 17
EP  - 23
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1685.395/
DO  - 10.26493/1855-3974.1685.395
LA  - en
ID  - 10_26493_1855_3974_1685_395
ER  - 
%0 Journal Article
%A Peter J. Dukes
%A Kaoruko Iwasaki
%T Incidence structures near configurations of type (n_3)
%J Ars Mathematica Contemporanea
%D 2020
%P 17-23
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1685.395/
%R 10.26493/1855-3974.1685.395
%G en
%F 10_26493_1855_3974_1685_395
Peter J. Dukes; Kaoruko Iwasaki. Incidence structures near configurations of type (n_3). Ars Mathematica Contemporanea, Tome 19 (2020) no. 1, pp. 17-23. doi : 10.26493/1855-3974.1685.395. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1685.395/

Cité par Sources :