Girth-regular graphs
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 349-368.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We introduce a notion of a girth-regular graph as a k-regular graph for which there exists a non-descending sequence (a1, a2, …, ak) (called the signature) giving, for every vertex u of the graph, the number of girth cycles the edges with end-vertex u lie on. Girth-regularity generalises two very different aspects of symmetry in graph theory: that of vertex transitivity and that of distance-regularity. For general girth-regular graphs, we give some results on the extremal cases of signatures. We then focus on the cubic case and provide a characterisation of cubic girth-regular graphs of girth up to 5.
DOI : 10.26493/1855-3974.1684.b0d
Keywords: Graph, girth-regular, cubic, girth
@article{10_26493_1855_3974_1684_b0d,
     author = {Primo\v{z} Poto\v{c}nik and Jano\v{s} Vidali},
     title = {Girth-regular graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {349--368},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1684.b0d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1684.b0d/}
}
TY  - JOUR
AU  - Primož Potočnik
AU  - Janoš Vidali
TI  - Girth-regular graphs
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 349
EP  - 368
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1684.b0d/
DO  - 10.26493/1855-3974.1684.b0d
LA  - en
ID  - 10_26493_1855_3974_1684_b0d
ER  - 
%0 Journal Article
%A Primož Potočnik
%A Janoš Vidali
%T Girth-regular graphs
%J Ars Mathematica Contemporanea
%D 2019
%P 349-368
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1684.b0d/
%R 10.26493/1855-3974.1684.b0d
%G en
%F 10_26493_1855_3974_1684_b0d
Primož Potočnik; Janoš Vidali. Girth-regular graphs. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 349-368. doi : 10.26493/1855-3974.1684.b0d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1684.b0d/

Cité par Sources :