A q-queens problem. VI. The bishops' period
Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 549-561.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The number of ways to place q nonattacking queens, bishops, or similar chess pieces on an n × n square chessboard is essentially a quasipolynomial function of n (by Part I of this series). The period of the quasipolynomial is difficult to settle. Here we prove that the empirically observed period 2 for three to ten bishops is the exact period for every number of bishops greater than 2. The proof depends on signed graphs and the Ehrhart theory of inside-out polytopes.
DOI : 10.26493/1855-3974.1657.d75
Keywords: Nonattacking chess pieces, Ehrhart theory, inside-out polytope, arrangement of hyperplanes, signed graph
@article{10_26493_1855_3974_1657_d75,
     author = {Seth Chaiken and Christopher R. H. Hanusa and Thomas Zaslavsky},
     title = {A q-queens problem. {VI.} {The} bishops' period},
     journal = {Ars Mathematica Contemporanea},
     pages = {549--561},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1657.d75},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/}
}
TY  - JOUR
AU  - Seth Chaiken
AU  - Christopher R. H. Hanusa
AU  - Thomas Zaslavsky
TI  - A q-queens problem. VI. The bishops' period
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 549
EP  - 561
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/
DO  - 10.26493/1855-3974.1657.d75
LA  - en
ID  - 10_26493_1855_3974_1657_d75
ER  - 
%0 Journal Article
%A Seth Chaiken
%A Christopher R. H. Hanusa
%A Thomas Zaslavsky
%T A q-queens problem. VI. The bishops' period
%J Ars Mathematica Contemporanea
%D 2019
%P 549-561
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/
%R 10.26493/1855-3974.1657.d75
%G en
%F 10_26493_1855_3974_1657_d75
Seth Chaiken; Christopher R. H. Hanusa; Thomas Zaslavsky. A q-queens problem. VI. The bishops' period. Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 549-561. doi : 10.26493/1855-3974.1657.d75. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/

Cité par Sources :