Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website
@article{10_26493_1855_3974_1657_d75, author = {Seth Chaiken and Christopher R. H. Hanusa and Thomas Zaslavsky}, title = {A q-queens problem. {VI.} {The} bishops' period}, journal = {Ars Mathematica Contemporanea}, pages = {549--561}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2019}, doi = {10.26493/1855-3974.1657.d75}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/} }
TY - JOUR AU - Seth Chaiken AU - Christopher R. H. Hanusa AU - Thomas Zaslavsky TI - A q-queens problem. VI. The bishops' period JO - Ars Mathematica Contemporanea PY - 2019 SP - 549 EP - 561 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/ DO - 10.26493/1855-3974.1657.d75 LA - en ID - 10_26493_1855_3974_1657_d75 ER -
%0 Journal Article %A Seth Chaiken %A Christopher R. H. Hanusa %A Thomas Zaslavsky %T A q-queens problem. VI. The bishops' period %J Ars Mathematica Contemporanea %D 2019 %P 549-561 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/ %R 10.26493/1855-3974.1657.d75 %G en %F 10_26493_1855_3974_1657_d75
Seth Chaiken; Christopher R. H. Hanusa; Thomas Zaslavsky. A q-queens problem. VI. The bishops' period. Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 549-561. doi : 10.26493/1855-3974.1657.d75. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1657.d75/
Cité par Sources :