The dimension of the negative cycle vectors of a signed graph
Ars mathematica contemporanea, Tome 16 (2019) no. 2, pp. 625-639
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
A signed graph is a graph Γ with edges labeled “+” and “−”. The sign of a cycle is the product of its edge signs. Let SpecC(Γ) denote the list of lengths of cycles in Γ. We equip each signed graph with a vector whose entries are the numbers of negative k-cycles for k ∈ SpecC(Γ). These vectors generate a subspace of ℝ|SpecC(Γ)|. Using matchings with a strong permutability property, we provide lower bounds on the dimension of this space; in particular, we show for complete graphs, complete bipartite graphs, and a few other graphs that this space is all of ℝ|SpecC(Γ)|.
Keywords:
Signed graph, negative cycle vector, permutable matching
@article{10_26493_1855_3974_1605_43f,
author = {Alex Schaefer and Thomas Zaslavsky},
title = {
{The} dimension of the negative cycle vectors of a signed graph
},
journal = {Ars mathematica contemporanea},
pages = {625--639},
year = {2019},
volume = {16},
number = {2},
doi = {10.26493/1855-3974.1605.43f},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1605.43f/}
}
TY - JOUR AU - Alex Schaefer AU - Thomas Zaslavsky TI - The dimension of the negative cycle vectors of a signed graph JO - Ars mathematica contemporanea PY - 2019 SP - 625 EP - 639 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1605.43f/ DO - 10.26493/1855-3974.1605.43f LA - en ID - 10_26493_1855_3974_1605_43f ER -
%0 Journal Article %A Alex Schaefer %A Thomas Zaslavsky %T The dimension of the negative cycle vectors of a signed graph %J Ars mathematica contemporanea %D 2019 %P 625-639 %V 16 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1605.43f/ %R 10.26493/1855-3974.1605.43f %G en %F 10_26493_1855_3974_1605_43f
Alex Schaefer; Thomas Zaslavsky. The dimension of the negative cycle vectors of a signed graph. Ars mathematica contemporanea, Tome 16 (2019) no. 2, pp. 625-639. doi: 10.26493/1855-3974.1605.43f
Cité par Sources :