On graphs with the smallest eigenvalue at least −1 − √2, part III
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 555-579.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

There are many results on graphs with the smallest eigenvalue at least −2. In order to study graphs with the eigenvalues at least −1 − √2, R. Woo and A. Neumaier introduced Hoffman graphs and ℋ-line graphs. They proved that a graph with the sufficiently large minimum degree and the smallest eigenvalue at least −1 − √2 is a slim {[h2], [h5], [h7], [h9]}-line graph. After that, T. Taniguchi researched on slim {[h2], [h5]}-line graphs. As an analogue, we reveal the condition under which a strict {[h1], [h4], [h7]}-cover of a slim {[h7]}-line graph is unique, and completely determine the minimal forbidden graphs for the slim {[h7]}-line graphs.
DOI : 10.26493/1855-3974.1581.b47
Keywords: Hoffman graph, line graph, smallest eigenvalue
@article{10_26493_1855_3974_1581_b47,
     author = {Sho Kubota and Tetsuji Taniguchi and Kiyoto Yoshino},
     title = {On graphs with the smallest eigenvalue at least \ensuremath{-}1 \ensuremath{-} \ensuremath{\sqrt{}}2, part {III}},
     journal = {Ars Mathematica Contemporanea},
     pages = {555--579},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1581.b47},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1581.b47/}
}
TY  - JOUR
AU  - Sho Kubota
AU  - Tetsuji Taniguchi
AU  - Kiyoto Yoshino
TI  - On graphs with the smallest eigenvalue at least −1 − √2, part III
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 555
EP  - 579
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1581.b47/
DO  - 10.26493/1855-3974.1581.b47
LA  - en
ID  - 10_26493_1855_3974_1581_b47
ER  - 
%0 Journal Article
%A Sho Kubota
%A Tetsuji Taniguchi
%A Kiyoto Yoshino
%T On graphs with the smallest eigenvalue at least −1 − √2, part III
%J Ars Mathematica Contemporanea
%D 2019
%P 555-579
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1581.b47/
%R 10.26493/1855-3974.1581.b47
%G en
%F 10_26493_1855_3974_1581_b47
Sho Kubota; Tetsuji Taniguchi; Kiyoto Yoshino. On graphs with the smallest eigenvalue at least −1 − √2, part III. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 555-579. doi : 10.26493/1855-3974.1581.b47. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1581.b47/

Cité par Sources :