Tetrahedral and pentahedral cages for discs
Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 255-270.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

This paper is about cages for compact convex sets. A cage is the 1-skeleton of a convex polytope in ℝ3. A cage is said to hold a set if the set cannot be continuously moved to a distant location, remaining congruent to itself and disjoint from the cage.In how many “truly different” positions can (compact 2-dimensional) discs be held by a cage? We completely answer this question for all tetrahedra. Moreover, we present pentahedral cages holding discs in a large number (57) of positions.
DOI : 10.26493/1855-3974.1560.a43
Keywords: Tetrahedral cages, pentahedral cages, discs
@article{10_26493_1855_3974_1560_a43,
     author = {Liping Yuan and Tudor Zamfirescu},
     title = {Tetrahedral and pentahedral cages for discs},
     journal = {Ars Mathematica Contemporanea},
     pages = {255--270},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1560.a43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1560.a43/}
}
TY  - JOUR
AU  - Liping Yuan
AU  - Tudor Zamfirescu
TI  - Tetrahedral and pentahedral cages for discs
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 255
EP  - 270
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1560.a43/
DO  - 10.26493/1855-3974.1560.a43
LA  - en
ID  - 10_26493_1855_3974_1560_a43
ER  - 
%0 Journal Article
%A Liping Yuan
%A Tudor Zamfirescu
%T Tetrahedral and pentahedral cages for discs
%J Ars Mathematica Contemporanea
%D 2019
%P 255-270
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1560.a43/
%R 10.26493/1855-3974.1560.a43
%G en
%F 10_26493_1855_3974_1560_a43
Liping Yuan; Tudor Zamfirescu. Tetrahedral and pentahedral cages for discs. Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 255-270. doi : 10.26493/1855-3974.1560.a43. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1560.a43/

Cité par Sources :