On the parameters of intertwining codes
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 49-58.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let F be a field and let Fr × s denote the space of r × s matrices over F. Given equinumerous subsets A = {Ai ∣ i ∈ I} ⊆ Fr × r and B = {Bi ∣ i ∈ I} ⊆ Fs × s we call the subspace C(A, B) := {X ∈ Fr × s ∣ AiX = XBi for i ∈ I} an intertwining code. We show that if C(A, B) ≠ {0}, then for each i ∈ I, the characteristic polynomials of Ai and Bi and share a nontrivial factor. We give an exact formula for k = dim(C(A, B)) and give upper and lower bounds. This generalizes previous work. Finally we construct intertwining codes with large minimum distance when the field is not ‘too small’. We give examples of codes where d = rs/k = 1/R is large where the minimum distance, dimension, and rate of the linear code C(A, B) are denoted by d, k, and R = k/rs, respectively.
DOI : 10.26493/1855-3974.1547.454
Keywords: Linear code, dimension, distance
@article{10_26493_1855_3974_1547_454,
     author = {Stephen P. Glasby and Cheryl E. Praeger},
     title = {On the parameters of intertwining codes},
     journal = {Ars Mathematica Contemporanea},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1547.454},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1547.454/}
}
TY  - JOUR
AU  - Stephen P. Glasby
AU  - Cheryl E. Praeger
TI  - On the parameters of intertwining codes
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 49
EP  - 58
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1547.454/
DO  - 10.26493/1855-3974.1547.454
LA  - en
ID  - 10_26493_1855_3974_1547_454
ER  - 
%0 Journal Article
%A Stephen P. Glasby
%A Cheryl E. Praeger
%T On the parameters of intertwining codes
%J Ars Mathematica Contemporanea
%D 2019
%P 49-58
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1547.454/
%R 10.26493/1855-3974.1547.454
%G en
%F 10_26493_1855_3974_1547_454
Stephen P. Glasby; Cheryl E. Praeger. On the parameters of intertwining codes. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 49-58. doi : 10.26493/1855-3974.1547.454. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1547.454/

Cité par Sources :