The Doyen-Wilson theorem for 3-sun systems
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 119-139.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A solution to the existence problem of G-designs with given subdesigns is known when G is a triangle with p = 0, 1, or 2 disjoint pendent edges: for p = 0, it is due to Doyen and Wilson, the first to pose such a problem for Steiner triple systems; for p = 1 and p = 2, the corresponding designs are kite systems and bull designs, respectively. Here, a complete solution to the problem is given in the remaining case where G is a 3-sun, i.e. a graph on six vertices consisting of a triangle with three pendent edges which form a 1-factor.
DOI : 10.26493/1855-3974.1490.eea
Keywords: 3-sun system, embedding, difference set
@article{10_26493_1855_3974_1490_eea,
     author = {Giovanni Lo Faro and Antoinette Tripodi},
     title = {The {Doyen-Wilson} theorem for 3-sun systems},
     journal = {Ars Mathematica Contemporanea},
     pages = {119--139},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1490.eea},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1490.eea/}
}
TY  - JOUR
AU  - Giovanni Lo Faro
AU  - Antoinette Tripodi
TI  - The Doyen-Wilson theorem for 3-sun systems
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 119
EP  - 139
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1490.eea/
DO  - 10.26493/1855-3974.1490.eea
LA  - en
ID  - 10_26493_1855_3974_1490_eea
ER  - 
%0 Journal Article
%A Giovanni Lo Faro
%A Antoinette Tripodi
%T The Doyen-Wilson theorem for 3-sun systems
%J Ars Mathematica Contemporanea
%D 2019
%P 119-139
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1490.eea/
%R 10.26493/1855-3974.1490.eea
%G en
%F 10_26493_1855_3974_1490_eea
Giovanni Lo Faro; Antoinette Tripodi. The Doyen-Wilson theorem for 3-sun systems. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 119-139. doi : 10.26493/1855-3974.1490.eea. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1490.eea/

Cité par Sources :