A note on the 4-girth-thickness of K_n,n,n
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 19-24.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The 4-girth-thickness θ(4, G) of a graph G is the minimum number of planar subgraphs of girth at least four whose union is G. In this paper, we obtain that the 4-girth-thickness of complete tripartite graph Kn, n, n is ⌈(n + 1) / 2⌉ except for θ(4, K1, 1, 1) = 2. And we also show that the 4-girth-thickness of the complete graph K10 is three which disprove the conjecture posed by Rubio-Montiel concerning to θ(4, K10).
DOI : 10.26493/1855-3974.1488.182
Keywords: Thickness, 4-girth-thickness, complete tripartite graph
@article{10_26493_1855_3974_1488_182,
     author = {Xia Guo and Yan Yang},
     title = {A note on the 4-girth-thickness of {K_n,n,n}},
     journal = {Ars Mathematica Contemporanea},
     pages = {19--24},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1488.182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1488.182/}
}
TY  - JOUR
AU  - Xia Guo
AU  - Yan Yang
TI  - A note on the 4-girth-thickness of K_n,n,n
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 19
EP  - 24
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1488.182/
DO  - 10.26493/1855-3974.1488.182
LA  - en
ID  - 10_26493_1855_3974_1488_182
ER  - 
%0 Journal Article
%A Xia Guo
%A Yan Yang
%T A note on the 4-girth-thickness of K_n,n,n
%J Ars Mathematica Contemporanea
%D 2019
%P 19-24
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1488.182/
%R 10.26493/1855-3974.1488.182
%G en
%F 10_26493_1855_3974_1488_182
Xia Guo; Yan Yang. A note on the 4-girth-thickness of K_n,n,n. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 19-24. doi : 10.26493/1855-3974.1488.182. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1488.182/

Cité par Sources :