Extremal embedded graphs
Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 637-652.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let G be a ribbon graph and μ(G) be the number of components of the virtual link formed from G as a cellularly embedded graph via the medial construction. In this paper we first prove that μ(G) ≤ f(G) + γ(G), where f(G) and γ(G) are the number of boundary components and Euler genus of G, respectively. A ribbon graph is said to be extremal if μ(G) = f(G) + γ(G). We then obtain that a ribbon graph is extremal if and only if its Petrial is plane. We introduce a notion of extremal minor and provide an excluded extremal minor characterization for extremal ribbon graphs. We also point out that a related result in the monograph by Ellis-Monaghan and Moffatt is not correct and prove that two related conjectures raised by Huggett and Tawfik hold for more general ribbon graphs.
DOI : 10.26493/1855-3974.1474.d54
Keywords: Ribbon graph, medial graph, Petrie dual, extremal minor, orientation
@article{10_26493_1855_3974_1474_d54,
     author = {Qi Yan and Xian'an Jin},
     title = {Extremal embedded graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {637--652},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1474.d54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1474.d54/}
}
TY  - JOUR
AU  - Qi Yan
AU  - Xian'an Jin
TI  - Extremal embedded graphs
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 637
EP  - 652
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1474.d54/
DO  - 10.26493/1855-3974.1474.d54
LA  - en
ID  - 10_26493_1855_3974_1474_d54
ER  - 
%0 Journal Article
%A Qi Yan
%A Xian'an Jin
%T Extremal embedded graphs
%J Ars Mathematica Contemporanea
%D 2019
%P 637-652
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1474.d54/
%R 10.26493/1855-3974.1474.d54
%G en
%F 10_26493_1855_3974_1474_d54
Qi Yan; Xian'an Jin. Extremal embedded graphs. Ars Mathematica Contemporanea, Tome 17 (2019) no. 2, pp. 637-652. doi : 10.26493/1855-3974.1474.d54. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1474.d54/

Cité par Sources :