Mirrors of reflections of regular maps
Ars Mathematica Contemporanea, Tome 15 (2018) no. 2, pp. 347-354.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A regular map ℳ is an embedding of a finite connected graph into a compact surface S such that its automorphism group Aut+(ℳ) acts transitively on the directed edges. A reflection of ℳ fixes a number of simple closed geodesics on S, which are called mirrors. In this paper, we prove two theorems which enable us to calculate the total number of mirrors fixed by the reflections of a regular map and the lengths of these mirrors. Furthermore, by applying these theorems to Hurwitz maps, we obtain some interesting results. In particular, we find an upper bound for the number of mirrors on Hurwitz surfaces.
DOI : 10.26493/1855-3974.1459.11d
Keywords: Riemann surface, regular map, Hurwitz map, reflection, mirror
@article{10_26493_1855_3974_1459_11d,
     author = {Adnan Meleko\u{g}lu},
     title = {Mirrors of reflections of regular maps},
     journal = {Ars Mathematica Contemporanea},
     pages = {347--354},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1459.11d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1459.11d/}
}
TY  - JOUR
AU  - Adnan Melekoğlu
TI  - Mirrors of reflections of regular maps
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 347
EP  - 354
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1459.11d/
DO  - 10.26493/1855-3974.1459.11d
LA  - en
ID  - 10_26493_1855_3974_1459_11d
ER  - 
%0 Journal Article
%A Adnan Melekoğlu
%T Mirrors of reflections of regular maps
%J Ars Mathematica Contemporanea
%D 2018
%P 347-354
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1459.11d/
%R 10.26493/1855-3974.1459.11d
%G en
%F 10_26493_1855_3974_1459_11d
Adnan Melekoğlu. Mirrors of reflections of regular maps. Ars Mathematica Contemporanea, Tome 15 (2018) no. 2, pp. 347-354. doi : 10.26493/1855-3974.1459.11d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1459.11d/

Cité par Sources :