Groups in which every non-nilpotent subgroup is self-normalizing
Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 39-51.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We study the class of groups having the property that every non-nilpotent subgroup is equal to its normalizer. These groups are either soluble or perfect. We describe soluble groups and finite perfect groups with the above property. Furthermore, we give some structural information in the infinite perfect case.
DOI : 10.26493/1855-3974.1439.fdf
Keywords: Normalizer, non-nilpotent subgroup, self-normalizing subgroup
@article{10_26493_1855_3974_1439_fdf,
     author = {Costantino Delizia and Urban Jezernik and Primo\v{z} Moravec and Chiara Nicotera},
     title = {Groups in which every non-nilpotent subgroup is self-normalizing},
     journal = {Ars Mathematica Contemporanea},
     pages = {39--51},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1439.fdf},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1439.fdf/}
}
TY  - JOUR
AU  - Costantino Delizia
AU  - Urban Jezernik
AU  - Primož Moravec
AU  - Chiara Nicotera
TI  - Groups in which every non-nilpotent subgroup is self-normalizing
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 39
EP  - 51
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1439.fdf/
DO  - 10.26493/1855-3974.1439.fdf
LA  - en
ID  - 10_26493_1855_3974_1439_fdf
ER  - 
%0 Journal Article
%A Costantino Delizia
%A Urban Jezernik
%A Primož Moravec
%A Chiara Nicotera
%T Groups in which every non-nilpotent subgroup is self-normalizing
%J Ars Mathematica Contemporanea
%D 2018
%P 39-51
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1439.fdf/
%R 10.26493/1855-3974.1439.fdf
%G en
%F 10_26493_1855_3974_1439_fdf
Costantino Delizia; Urban Jezernik; Primož Moravec; Chiara Nicotera. Groups in which every non-nilpotent subgroup is self-normalizing. Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 39-51. doi : 10.26493/1855-3974.1439.fdf. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1439.fdf/

Cité par Sources :