Edge-transitive bi-p-metacirculants of valency p
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 215-235.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let p be an odd prime. A graph is called a bi-p-metacirculant on a metacyclic p-group H if admits a metacyclic p-group H of automorphisms acting semiregularly on its vertices with two orbits. A bi-p-metacirculant on a group H is said to be abelian or non-abelian according to whether or not H is abelian.By the results of Malnič et al. in 2004 and Feng et al. in 2006, we see that up to isomorphism, the Gray graph is the only cubic edge-transitive non-abelian bi-p-metacirculant on a group of order p3. This motivates us to consider the classification of cubic edge-transitive bi-p-metacirculants. Previously, we have proved that a cubic edge-transitive non-abelian bi-p-metacirculant exists if and only if p = 3. In this paper, we give a classification of connected edge-transitive non-abelian bi-p-metacirculants of valency p, and consequently, we complete the classification of connected cubic edge-transitive non-abelian bi-p-metacirculants.
DOI : 10.26493/1855-3974.1437.6e8
Keywords: Bi-p-metacirculant, edge-transitive, inner-abelian p-group
@article{10_26493_1855_3974_1437_6e8,
     author = {Yan-Li Qin and Jin-Xin Zhou},
     title = {Edge-transitive bi-p-metacirculants of valency p},
     journal = {Ars Mathematica Contemporanea},
     pages = {215--235},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1437.6e8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1437.6e8/}
}
TY  - JOUR
AU  - Yan-Li Qin
AU  - Jin-Xin Zhou
TI  - Edge-transitive bi-p-metacirculants of valency p
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 215
EP  - 235
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1437.6e8/
DO  - 10.26493/1855-3974.1437.6e8
LA  - en
ID  - 10_26493_1855_3974_1437_6e8
ER  - 
%0 Journal Article
%A Yan-Li Qin
%A Jin-Xin Zhou
%T Edge-transitive bi-p-metacirculants of valency p
%J Ars Mathematica Contemporanea
%D 2019
%P 215-235
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1437.6e8/
%R 10.26493/1855-3974.1437.6e8
%G en
%F 10_26493_1855_3974_1437_6e8
Yan-Li Qin; Jin-Xin Zhou. Edge-transitive bi-p-metacirculants of valency p. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 215-235. doi : 10.26493/1855-3974.1437.6e8. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1437.6e8/

Cité par Sources :