Intrinsic linking with linking numbers of specified divisibility
Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 331-348.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let n, q and r be positive integers, and let KNn be the n-skeleton of an (N − 1)-simplex. We show that for N sufficiently large every embedding of KNn in ℝ2n + 1 contains a link consisting of r disjoint n-spheres, such that every pairwise linking number is a nonzero multiple of q. This result is new in the classical case n = 1 (graphs embedded in ℝ3) as well as the higher dimensional cases n ≥ 2; and since it implies the existence of an r-component link with all pairwise linking numbers at least q in absolute value, it also extends a result of Flapan et al. from n = 1 to higher dimensions. Additionally, for r = 2 we obtain an improved upper bound on the number of vertices required to force a two-component link with linking number a nonzero multiple of q. Our new bound has growth O(nq2), in contrast to the previous bound of growth O(√(n)4nqn + 2).
DOI : 10.26493/1855-3974.1427.75c
Keywords: Intrinsic linking, complete n-complex, Ramsey theory
@article{10_26493_1855_3974_1427_75c,
     author = {Christopher Tuffley},
     title = {Intrinsic linking with linking numbers of specified divisibility},
     journal = {Ars Mathematica Contemporanea},
     pages = {331--348},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2019},
     doi = {10.26493/1855-3974.1427.75c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1427.75c/}
}
TY  - JOUR
AU  - Christopher Tuffley
TI  - Intrinsic linking with linking numbers of specified divisibility
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 331
EP  - 348
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1427.75c/
DO  - 10.26493/1855-3974.1427.75c
LA  - en
ID  - 10_26493_1855_3974_1427_75c
ER  - 
%0 Journal Article
%A Christopher Tuffley
%T Intrinsic linking with linking numbers of specified divisibility
%J Ars Mathematica Contemporanea
%D 2019
%P 331-348
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1427.75c/
%R 10.26493/1855-3974.1427.75c
%G en
%F 10_26493_1855_3974_1427_75c
Christopher Tuffley. Intrinsic linking with linking numbers of specified divisibility. Ars Mathematica Contemporanea, Tome 16 (2019) no. 2, pp. 331-348. doi : 10.26493/1855-3974.1427.75c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1427.75c/

Cité par Sources :