On the generalized Oberwolfach problem
Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The generalized Oberwolfach problem OPt(2w + 1; N1, N2, …, Nt; α1, α2, …, αt) asks for a factorization of K2w + 1 into αi CNi-factors (where a CNi-factor of K2w + 1 is a spanning subgraph whose components are cycles of length Ni ≥ 3) for i = 1, 2, …, t. Necessarily, N = lcm(N1, N2, …, Nt) is a divisor of 2w + 1 and w = Σ ti = 1 αi.For t = 1 we have the classic Oberwolfach problem. For t = 2 this is the well-studied Hamilton-Waterloo problem, whereas for t ≥ 3 very little is known.In this paper, we show, among other things, that the above necessary conditions are sufficient whenever 2w + 1 ≥ (t + 1)N, αi > 1 for every i ∈ {1, 2, …, t}, and gcd (N1, N2, …, Nt) > 1. We also provide sufficient conditions for the solvability of the generalized Oberwolfach problem over an arbitrary graph and, in particular, the complete equipartite graph.
DOI : 10.26493/1855-3974.1426.212
Keywords: 2-factorizations, resolvable cycle decompositions, cycle systems, (generalized) Oberwolfach problem, Hamilton-Waterloo problem
@article{10_26493_1855_3974_1426_212,
     author = {Andrea C. Burgess and Peter Danziger and Tommaso Traetta},
     title = {On the generalized {Oberwolfach} problem},
     journal = {Ars Mathematica Contemporanea},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1426.212},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1426.212/}
}
TY  - JOUR
AU  - Andrea C. Burgess
AU  - Peter Danziger
AU  - Tommaso Traetta
TI  - On the generalized Oberwolfach problem
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 67
EP  - 78
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1426.212/
DO  - 10.26493/1855-3974.1426.212
LA  - en
ID  - 10_26493_1855_3974_1426_212
ER  - 
%0 Journal Article
%A Andrea C. Burgess
%A Peter Danziger
%A Tommaso Traetta
%T On the generalized Oberwolfach problem
%J Ars Mathematica Contemporanea
%D 2019
%P 67-78
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1426.212/
%R 10.26493/1855-3974.1426.212
%G en
%F 10_26493_1855_3974_1426_212
Andrea C. Burgess; Peter Danziger; Tommaso Traetta. On the generalized Oberwolfach problem. Ars Mathematica Contemporanea, Tome 17 (2019) no. 1, pp. 67-78. doi : 10.26493/1855-3974.1426.212. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1426.212/

Cité par Sources :