On Wiener inverse interval problem of trees
Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 19-37.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The Wiener index W(G) of a simple connected graph G is defined as the sum of distances over all pairs of vertices in a graph. We denote by W[Tn] the set of all values of the Wiener index for a graph from the class Tn of trees on n vertices. The largest interval of consecutive integers (consecutive even integers in case of odd n) contained in W[Tn] is denoted by Wint[Tn]. In this paper we prove that both sets are of cardinality 1⁄6n3 + O(n5/2) in the case of even n, while in the case of odd n we prove that the cardinality of both sets equals 1⁄12n3 + O(n5/2), which essentially solves two conjectures posed in the literature.
DOI : 10.26493/1855-3974.1376.7c2
Keywords: Wiener index, Wiener inverse interval problem, tree
@article{10_26493_1855_3974_1376_7c2,
     author = {Jelena Sedlar},
     title = {On {Wiener} inverse interval problem of trees},
     journal = {Ars Mathematica Contemporanea},
     pages = {19--37},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1376.7c2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1376.7c2/}
}
TY  - JOUR
AU  - Jelena Sedlar
TI  - On Wiener inverse interval problem of trees
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 19
EP  - 37
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1376.7c2/
DO  - 10.26493/1855-3974.1376.7c2
LA  - en
ID  - 10_26493_1855_3974_1376_7c2
ER  - 
%0 Journal Article
%A Jelena Sedlar
%T On Wiener inverse interval problem of trees
%J Ars Mathematica Contemporanea
%D 2018
%P 19-37
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1376.7c2/
%R 10.26493/1855-3974.1376.7c2
%G en
%F 10_26493_1855_3974_1376_7c2
Jelena Sedlar. On Wiener inverse interval problem of trees. Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 19-37. doi : 10.26493/1855-3974.1376.7c2. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1376.7c2/

Cité par Sources :