The 4-girth-thickness of the complete graph
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 319-327.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper, we define the 4-girth-thickness θ(4, G) of a graph G as the minimum number of planar subgraphs of girth at least 4 whose union is G. We prove that the 4-girth-thickness of an arbitrary complete graph Kn, θ(4, Kn), is ⌈(n+2)/4⌉ for n ≠ 6, 10 and θ(4, K6)=3.
DOI : 10.26493/1855-3974.1349.b67
Keywords: Thickness, planar decomposition, girth, complete graph
@article{10_26493_1855_3974_1349_b67,
     author = {Christian Rubio-Montiel},
     title = {The 4-girth-thickness of the complete graph},
     journal = {Ars Mathematica Contemporanea},
     pages = {319--327},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1349.b67},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1349.b67/}
}
TY  - JOUR
AU  - Christian Rubio-Montiel
TI  - The 4-girth-thickness of the complete graph
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 319
EP  - 327
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1349.b67/
DO  - 10.26493/1855-3974.1349.b67
LA  - en
ID  - 10_26493_1855_3974_1349_b67
ER  - 
%0 Journal Article
%A Christian Rubio-Montiel
%T The 4-girth-thickness of the complete graph
%J Ars Mathematica Contemporanea
%D 2018
%P 319-327
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1349.b67/
%R 10.26493/1855-3974.1349.b67
%G en
%F 10_26493_1855_3974_1349_b67
Christian Rubio-Montiel. The 4-girth-thickness of the complete graph. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 319-327. doi : 10.26493/1855-3974.1349.b67. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1349.b67/

Cité par Sources :