The size of algebraic integers with many real conjugates
Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 165-176.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In this paper we show that the relative normalised size with respect to a number field K of an algebraic integer α ≠ -1, 0, 1 is greater than 1 provided that the number of real embeddings s of K satisfies s ≥ 0.828n, where n = [K : Q]. This can be compared with the previous much more restrictive estimate s ≥ n − 0.192√(n/log n) and shows that the minimum m(K) over the relative normalised size of nonzero algebraic integers α in such a field K is equal to 1 which is attained at α = ±1. Stronger than previous but apparently not optimal bound for m(K) is also obtained for the fields K satisfying 0.639 ≤ s/n 0.827469…. In the proof we use a lower bound for the Mahler measure of an algebraic number with many real conjugates.
DOI : 10.26493/1855-3974.1348.d47
Keywords: Algebraic number field, relative size, relative normalised size, Mahler measure, Schur-Siegel-Smyth trace problem
@article{10_26493_1855_3974_1348_d47,
     author = {Art\={u}ras Dubickas},
     title = {The size of algebraic integers with many real conjugates},
     journal = {Ars Mathematica Contemporanea},
     pages = {165--176},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1348.d47},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1348.d47/}
}
TY  - JOUR
AU  - Artūras Dubickas
TI  - The size of algebraic integers with many real conjugates
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 165
EP  - 176
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1348.d47/
DO  - 10.26493/1855-3974.1348.d47
LA  - en
ID  - 10_26493_1855_3974_1348_d47
ER  - 
%0 Journal Article
%A Artūras Dubickas
%T The size of algebraic integers with many real conjugates
%J Ars Mathematica Contemporanea
%D 2018
%P 165-176
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1348.d47/
%R 10.26493/1855-3974.1348.d47
%G en
%F 10_26493_1855_3974_1348_d47
Artūras Dubickas. The size of algebraic integers with many real conjugates. Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 165-176. doi : 10.26493/1855-3974.1348.d47. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1348.d47/

Cité par Sources :