Groups of symmetric crosscap number less than or equal to 17
Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 173-190.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Every finite group G acts on some non-orientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of G. It is known that 3 is not the  of any group but it remains unknown whether there are other such values, called gaps.In this paper we obtain the groups with symmetric crosscap number less than or equal to 17. Also, we obtain six infinite families with symmetric crosscap number of the form 12k + 3.
DOI : 10.26493/1855-3974.1341.5a3
Keywords: Symmetric crosscap number, Klein surfaces
@article{10_26493_1855_3974_1341_5a3,
     author = {Adri\'an Bacelo},
     title = {Groups of symmetric crosscap number less than or equal to 17},
     journal = {Ars Mathematica Contemporanea},
     pages = {173--190},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1341.5a3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1341.5a3/}
}
TY  - JOUR
AU  - Adrián Bacelo
TI  - Groups of symmetric crosscap number less than or equal to 17
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 173
EP  - 190
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1341.5a3/
DO  - 10.26493/1855-3974.1341.5a3
LA  - en
ID  - 10_26493_1855_3974_1341_5a3
ER  - 
%0 Journal Article
%A Adrián Bacelo
%T Groups of symmetric crosscap number less than or equal to 17
%J Ars Mathematica Contemporanea
%D 2018
%P 173-190
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1341.5a3/
%R 10.26493/1855-3974.1341.5a3
%G en
%F 10_26493_1855_3974_1341_5a3
Adrián Bacelo. Groups of symmetric crosscap number less than or equal to 17. Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 173-190. doi : 10.26493/1855-3974.1341.5a3. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1341.5a3/

Cité par Sources :