The arc-types of Cayley graphs
Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 97-112.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Let X be a finite vertex-transitive graph of valency d, and let A be the full automorphism group of X. Then the arc-type of X is defined in terms of the sizes of the orbits of the action of the stabiliser Av of a given vertex v on the set of arcs incident with v. Specifically, the arc-type is the partition of d as the sum n1 + n2 + … + nt + (m1 + m1) + (m2 + m2) + … + (ms + ms), where n1, n2, …, nt are the sizes of the self-paired orbits, and m1, m1, m2, m2, …, ms, ms are the sizes of the non-self-paired orbits, in descending order.In a recent paper, it was shown by Conder, Pisanski and Žitnik that with the exception of the partitions 1 + 1 and (1 + 1) for valency 2, every such partition occurs as the arc-type of some vertex-transitive graph. In this paper, we extend this to show that in fact every partition other than 1, 1 + 1 and (1 + 1) occurs as the arc-type of infinitely many connected finite Cayley graphs with the given valency d. As a consequence, this also shows that for every d > 2, there are infinitely many finite zero-symmetric graphs (or GRRs) of valency d.
DOI : 10.26493/1855-3974.1327.6ee
Keywords: Symmetry type, vertex-transitive graph, arc-transitive graph, Cayley graph, zero-symmetric graph, Cartesian product, covering graph
@article{10_26493_1855_3974_1327_6ee,
     author = {Marston D. E. Conder and Nemanja Poznanovi\'c},
     title = {The arc-types of {Cayley} graphs},
     journal = {Ars Mathematica Contemporanea},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1327.6ee},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1327.6ee/}
}
TY  - JOUR
AU  - Marston D. E. Conder
AU  - Nemanja Poznanović
TI  - The arc-types of Cayley graphs
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 97
EP  - 112
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1327.6ee/
DO  - 10.26493/1855-3974.1327.6ee
LA  - en
ID  - 10_26493_1855_3974_1327_6ee
ER  - 
%0 Journal Article
%A Marston D. E. Conder
%A Nemanja Poznanović
%T The arc-types of Cayley graphs
%J Ars Mathematica Contemporanea
%D 2018
%P 97-112
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1327.6ee/
%R 10.26493/1855-3974.1327.6ee
%G en
%F 10_26493_1855_3974_1327_6ee
Marston D. E. Conder; Nemanja Poznanović. The arc-types of Cayley graphs. Ars Mathematica Contemporanea, Tome 15 (2018) no. 1, pp. 97-112. doi : 10.26493/1855-3974.1327.6ee. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1327.6ee/

Cité par Sources :