Transversals in generalized Latin squares
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 39-47.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We are seeking a sufficient condition that forces a transversal in a generalized Latin square. A generalized Latin square of order n is equivalent to a proper edge-coloring of Kn, n. A transversal corresponds to a multicolored perfect matching. Akbari and Alipour defined l(n) as the least integer such that every properly edge-colored Kn, n, which contains at least l(n) different colors, admits a multicolored perfect matching. They conjectured that l(n) ≤ n2/2 if n is large enough. In this note we prove that l(n) is bounded from above by 0.75n2 if n > 1. We point out a connection to anti-Ramsey problems. We propose a conjecture related to a well-known result by Woolbright and Fu, that every proper edge-coloring of K2n admits a multicolored 1-factor.
DOI : 10.26493/1855-3974.1316.2d2
Keywords: Latin squares, transversals, anti-Ramsey problems, Lovász local lemma
@article{10_26493_1855_3974_1316_2d2,
     author = {J\'anos Bar\'at and Zolt\'an L\'or\'ant Nagy},
     title = {Transversals in generalized {Latin} squares},
     journal = {Ars Mathematica Contemporanea},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1316.2d2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1316.2d2/}
}
TY  - JOUR
AU  - János Barát
AU  - Zoltán Lóránt Nagy
TI  - Transversals in generalized Latin squares
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 39
EP  - 47
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1316.2d2/
DO  - 10.26493/1855-3974.1316.2d2
LA  - en
ID  - 10_26493_1855_3974_1316_2d2
ER  - 
%0 Journal Article
%A János Barát
%A Zoltán Lóránt Nagy
%T Transversals in generalized Latin squares
%J Ars Mathematica Contemporanea
%D 2019
%P 39-47
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1316.2d2/
%R 10.26493/1855-3974.1316.2d2
%G en
%F 10_26493_1855_3974_1316_2d2
János Barát; Zoltán Lóránt Nagy. Transversals in generalized Latin squares. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 39-47. doi : 10.26493/1855-3974.1316.2d2. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1316.2d2/

Cité par Sources :