On local properties of 1-planar graphs with high minimum degree
Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 245-254.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph is called 1-planar if there exists its drawing in the plane such that each edge contains at most one crossing. We prove that each 1-planar graph of minimum degree 7 contains a pair of adjacent vertices of degree 7 as well as several small graphs whose vertices have small degrees; we also prove the existence of a 4-cycle with relatively small degree vertices in 1-planar graphs of minimum degree at least 6.
DOI : 10.26493/1855-3974.131.91c
Keywords: 1-planar graph, light graph
@article{10_26493_1855_3974_131_91c,
     author = {D\'avid Hud\'ak and Tom\'a\v{s} Madaras},
     title = {On local properties of 1-planar graphs with high minimum degree},
     journal = {Ars Mathematica Contemporanea},
     pages = {245--254},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.26493/1855-3974.131.91c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.131.91c/}
}
TY  - JOUR
AU  - Dávid Hudák
AU  - Tomáš Madaras
TI  - On local properties of 1-planar graphs with high minimum degree
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 245
EP  - 254
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.131.91c/
DO  - 10.26493/1855-3974.131.91c
LA  - en
ID  - 10_26493_1855_3974_131_91c
ER  - 
%0 Journal Article
%A Dávid Hudák
%A Tomáš Madaras
%T On local properties of 1-planar graphs with high minimum degree
%J Ars Mathematica Contemporanea
%D 2011
%P 245-254
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.131.91c/
%R 10.26493/1855-3974.131.91c
%G en
%F 10_26493_1855_3974_131_91c
Dávid Hudák; Tomáš Madaras. On local properties of 1-planar graphs with high minimum degree. Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 245-254. doi : 10.26493/1855-3974.131.91c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.131.91c/

Cité par Sources :