Classification and Galois conjugacy of Hamming maps
Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 313-328.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We show that for each d ≥ 1 the d-dimensional Hamming graph H(d, q) has an orientably regular surface embedding if and only if q is a prime power pe. If q > 2 there are up to isomorphism φ(q − 1)/e such maps, all constructed as Cayley maps for a d-dimensional vector space over the field Fq. We show that for each such pair (d, q) the corresponding Belyi pairs are conjugate under the action of the absolute Galois group Gal \overline Q, and we determine their minimal field of definition. We also classify the orientably regular embedding of merged Hamming graphs for q > 3.
DOI : 10.26493/1855-3974.130.cba
Keywords: Hamming graph, Hamming map, automorphism group, Galois group.
@article{10_26493_1855_3974_130_cba,
     author = {Gareth A. Jones},
     title = {Classification and {Galois} conjugacy of {Hamming} maps},
     journal = {Ars Mathematica Contemporanea},
     pages = {313--328},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.26493/1855-3974.130.cba},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.130.cba/}
}
TY  - JOUR
AU  - Gareth A. Jones
TI  - Classification and Galois conjugacy of Hamming maps
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 313
EP  - 328
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.130.cba/
DO  - 10.26493/1855-3974.130.cba
LA  - en
ID  - 10_26493_1855_3974_130_cba
ER  - 
%0 Journal Article
%A Gareth A. Jones
%T Classification and Galois conjugacy of Hamming maps
%J Ars Mathematica Contemporanea
%D 2011
%P 313-328
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.130.cba/
%R 10.26493/1855-3974.130.cba
%G en
%F 10_26493_1855_3974_130_cba
Gareth A. Jones. Classification and Galois conjugacy of Hamming maps. Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 313-328. doi : 10.26493/1855-3974.130.cba. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.130.cba/

Cité par Sources :