Every finite group has a normal bi-Cayley graph
Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 177-186.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A graph Γ with a group H of automorphisms acting semiregularly on the vertices with two orbits is called a bi-Cayley graph over H. When H is a normal subgroup of Aut(Γ), we say that Γ is normal with respect to H. In this paper, we show that every finite group has a connected normal bi-Cayley graph. This improves a theorem by Arezoomand and Taeri and provides a positive answer to a question reported in the literature.
DOI : 10.26493/1855-3974.1298.937
Keywords: Normal, bi-Cayley, Cartesian product.
@article{10_26493_1855_3974_1298_937,
     author = {Jin-Xin Zhou},
     title = {Every finite group has a normal {bi-Cayley} graph},
     journal = {Ars Mathematica Contemporanea},
     pages = {177--186},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     doi = {10.26493/1855-3974.1298.937},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1298.937/}
}
TY  - JOUR
AU  - Jin-Xin Zhou
TI  - Every finite group has a normal bi-Cayley graph
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 177
EP  - 186
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1298.937/
DO  - 10.26493/1855-3974.1298.937
LA  - en
ID  - 10_26493_1855_3974_1298_937
ER  - 
%0 Journal Article
%A Jin-Xin Zhou
%T Every finite group has a normal bi-Cayley graph
%J Ars Mathematica Contemporanea
%D 2018
%P 177-186
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1298.937/
%R 10.26493/1855-3974.1298.937
%G en
%F 10_26493_1855_3974_1298_937
Jin-Xin Zhou. Every finite group has a normal bi-Cayley graph. Ars Mathematica Contemporanea, Tome 14 (2018) no. 1, pp. 177-186. doi : 10.26493/1855-3974.1298.937. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1298.937/

Cité par Sources :