Facial parity edge colouring
Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 255-269.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

A facial parity edge colouring of a connected bridgeless plane graph is an edge colouring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same colour, in addition, for each face α and each colour c, either no edge or an odd number of edges incident with \alpha is coloured with c. From Vizing's theorem it follows that every 3-connected plane graph has a such colouring with at most Δ* + 1 colours, where Δ* is the size of the largest face. In this paper we prove that any connected bridgeless plane graph has a facial parity edge colouring with at most 92 colours.
DOI : 10.26493/1855-3974.129.be3
Keywords: Plane graph, facial walk, edge colouring.
@article{10_26493_1855_3974_129_be3,
     author = {J\'ulius Czap and Stanislav Jendro\v{l} and Franti\v{s}ek Kardo\v{s}},
     title = {Facial parity edge colouring},
     journal = {Ars Mathematica Contemporanea},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.26493/1855-3974.129.be3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.129.be3/}
}
TY  - JOUR
AU  - Július Czap
AU  - Stanislav Jendroľ
AU  - František Kardoš
TI  - Facial parity edge colouring
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 255
EP  - 269
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.129.be3/
DO  - 10.26493/1855-3974.129.be3
LA  - en
ID  - 10_26493_1855_3974_129_be3
ER  - 
%0 Journal Article
%A Július Czap
%A Stanislav Jendroľ
%A František Kardoš
%T Facial parity edge colouring
%J Ars Mathematica Contemporanea
%D 2011
%P 255-269
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.129.be3/
%R 10.26493/1855-3974.129.be3
%G en
%F 10_26493_1855_3974_129_be3
Július Czap; Stanislav Jendroľ; František Kardoš. Facial parity edge colouring. Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 255-269. doi : 10.26493/1855-3974.129.be3. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.129.be3/

Cité par Sources :