Inherited unitals in Moulton planes
Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 251-265.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We prove that every Moulton plane of odd order—by duality every generalised André plane—contains a unital. We conjecture that such unitals are non-classical, that is, they are not isomorphic, as designs, to the Hermitian unital. We prove our conjecture for Moulton planes which differ from PG(2, q2) by a relatively small number of point-line incidences. Up to duality, our results extend previous analogous results—due to Barwick and Grüning—concerning inherited unitals in Hall planes.
DOI : 10.26493/1855-3974.1285.f3c
Keywords: Unitals, Moulton planes
@article{10_26493_1855_3974_1285_f3c,
     author = {G\'abor Korchm\'aros and Angelo Sonnino and Tam\'as Sz\H{o}nyi},
     title = {Inherited unitals in {Moulton} planes},
     journal = {Ars Mathematica Contemporanea},
     pages = {251--265},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1285.f3c},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1285.f3c/}
}
TY  - JOUR
AU  - Gábor Korchmáros
AU  - Angelo Sonnino
AU  - Tamás Szőnyi
TI  - Inherited unitals in Moulton planes
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 251
EP  - 265
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1285.f3c/
DO  - 10.26493/1855-3974.1285.f3c
LA  - en
ID  - 10_26493_1855_3974_1285_f3c
ER  - 
%0 Journal Article
%A Gábor Korchmáros
%A Angelo Sonnino
%A Tamás Szőnyi
%T Inherited unitals in Moulton planes
%J Ars Mathematica Contemporanea
%D 2018
%P 251-265
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1285.f3c/
%R 10.26493/1855-3974.1285.f3c
%G en
%F 10_26493_1855_3974_1285_f3c
Gábor Korchmáros; Angelo Sonnino; Tamás Szőnyi. Inherited unitals in Moulton planes. Ars Mathematica Contemporanea, Tome 14 (2018) no. 2, pp. 251-265. doi : 10.26493/1855-3974.1285.f3c. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1285.f3c/

Cité par Sources :