Characterizing all graphs with 2-exceptional edges
Ars Mathematica Contemporanea, Tome 15 (2018) no. 2, pp. 383-406.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

Dirac and Shuster in 1954 exhibited a simple proof of Kuratowski theorem by showing that any 1-crossing-critical edge of G belongs to a Kuratowski subdivision of G. In 1983, Širáň extended this result to any 2-crossing-critical edge e with endvertices b and c of a graph G with crossing number at least two, whenever no two blocks of G − b − c contain all its vertices. Calling an edge f of G k-exceptional whenever f is k-crossing-critical and it does not belong to any Kuratowski subgraph of G, he showed that simple 3-connected graphs with k-exceptional edges exist for any k ≥ 6, and they exist even for arbitrarily large difference of cr(G) − cr(G − f). In 1991, Kochol constructed such examples for any k ≥ 4, and commented that Širáň’s result holds for any simple graph.Examining the case when two blocks contain all the vertices of G − b − c, we show that graphs with k-exceptional edges exist for any k ≥ 2, albeit not necessarily simple. We confirm that no such simple graphs with 2-exceptional edges exist by applying the techniques of the recent characterization of 2-crossing-critical graphs to explicitly describe the set of all graphs with 2-exceptional edges and noting they all contain parallel edges. In this context, the paper can be read as an accessible prelude to the characterization of 2-crossing-critical graphs.
DOI : 10.26493/1855-3974.1282.378
Keywords: Kuratowski subgraphs, crossing number, exceptional edges
@article{10_26493_1855_3974_1282_378,
     author = {Drago Bokal and Jes\'us Lea\~nos},
     title = {Characterizing all graphs with 2-exceptional edges},
     journal = {Ars Mathematica Contemporanea},
     pages = {383--406},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2018},
     doi = {10.26493/1855-3974.1282.378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1282.378/}
}
TY  - JOUR
AU  - Drago Bokal
AU  - Jesús Leaños
TI  - Characterizing all graphs with 2-exceptional edges
JO  - Ars Mathematica Contemporanea
PY  - 2018
SP  - 383
EP  - 406
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1282.378/
DO  - 10.26493/1855-3974.1282.378
LA  - en
ID  - 10_26493_1855_3974_1282_378
ER  - 
%0 Journal Article
%A Drago Bokal
%A Jesús Leaños
%T Characterizing all graphs with 2-exceptional edges
%J Ars Mathematica Contemporanea
%D 2018
%P 383-406
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1282.378/
%R 10.26493/1855-3974.1282.378
%G en
%F 10_26493_1855_3974_1282_378
Drago Bokal; Jesús Leaños. Characterizing all graphs with 2-exceptional edges. Ars Mathematica Contemporanea, Tome 15 (2018) no. 2, pp. 383-406. doi : 10.26493/1855-3974.1282.378. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1282.378/

Cité par Sources :