On the k-metric dimension of metric spaces
Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 25-38.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The metric dimension of a general metric space was defined in 1953, applied to the set of vertices of a graph metric in 1975, and developed further for metric spaces in 2013. It was then generalised in 2015 to the k-metric dimension of a graph for each positive integer k, where k = 1 corresponds to the original definition. Here, we discuss the k-metric dimension of general metric spaces.
DOI : 10.26493/1855-3974.1281.c7f
Keywords: Metric spaces, metric dimension, k-metric dimension
@article{10_26493_1855_3974_1281_c7f,
     author = {Alan F. Beardon and Juan Alberto Rodr{\i}́guez-Vel\'azquez},
     title = {On the k-metric dimension of metric spaces},
     journal = {Ars Mathematica Contemporanea},
     pages = {25--38},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2019},
     doi = {10.26493/1855-3974.1281.c7f},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1281.c7f/}
}
TY  - JOUR
AU  - Alan F. Beardon
AU  - Juan Alberto Rodrı́guez-Velázquez
TI  - On the k-metric dimension of metric spaces
JO  - Ars Mathematica Contemporanea
PY  - 2019
SP  - 25
EP  - 38
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1281.c7f/
DO  - 10.26493/1855-3974.1281.c7f
LA  - en
ID  - 10_26493_1855_3974_1281_c7f
ER  - 
%0 Journal Article
%A Alan F. Beardon
%A Juan Alberto Rodrı́guez-Velázquez
%T On the k-metric dimension of metric spaces
%J Ars Mathematica Contemporanea
%D 2019
%P 25-38
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1281.c7f/
%R 10.26493/1855-3974.1281.c7f
%G en
%F 10_26493_1855_3974_1281_c7f
Alan F. Beardon; Juan Alberto Rodrı́guez-Velázquez. On the k-metric dimension of metric spaces. Ars Mathematica Contemporanea, Tome 16 (2019) no. 1, pp. 25-38. doi : 10.26493/1855-3974.1281.c7f. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1281.c7f/

Cité par Sources :