The symmetric genus spectrum of finite groups
Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 271-289.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

The symmetric genus of the finite group G, denoted by σ(G), is the smallest non-negative integer g such that the group G acts faithfully on a closed orientable surface of genus g (not necessarily preserving orientation). This paper investigates the question of whether for every non-negative integer g, there exists some G with symmetric genus g. It is shown that that the spectrum (range of values) of σ includes every non-negative integer g =!= 8 or 14 mod 18, and moreover, if a gap occurs at some g == 8 or 14 modulo 18, then the prime-power factorization of g − 1 includes some factor pe == 5 mod 6. In fact, evidence suggests that this spectrum has no gaps at all.
@article{10_26493_1855_3974_127_eb9,
     author = {Marston D. E. Conder and Thomas W. Tucker},
     title = {The symmetric genus spectrum of finite groups},
     journal = {Ars Mathematica Contemporanea},
     pages = {271--289},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.26493/1855-3974.127.eb9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.127.eb9/}
}
TY  - JOUR
AU  - Marston D. E. Conder
AU  - Thomas W. Tucker
TI  - The symmetric genus spectrum of finite groups
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 271
EP  - 289
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.127.eb9/
DO  - 10.26493/1855-3974.127.eb9
LA  - en
ID  - 10_26493_1855_3974_127_eb9
ER  - 
%0 Journal Article
%A Marston D. E. Conder
%A Thomas W. Tucker
%T The symmetric genus spectrum of finite groups
%J Ars Mathematica Contemporanea
%D 2011
%P 271-289
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.127.eb9/
%R 10.26493/1855-3974.127.eb9
%G en
%F 10_26493_1855_3974_127_eb9
Marston D. E. Conder; Thomas W. Tucker. The symmetric genus spectrum of finite groups. Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 271-289. doi : 10.26493/1855-3974.127.eb9. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.127.eb9/

Cité par Sources :