Small vertex-transitive graphs of given degree and girth
Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 375-384.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

We investigate the basic interplay between the small k-valent vertex-transitive graphs of girth g and the (k, g)-cages, the smallest k-valent graphs of girth g. We prove the existence of k-valent Cayley graphs of girth g for every pairof parameters k ≥ 2 and g ≥ 3, improve the lower bounds on the order of the smallest (k, g) vertex-transitive graphs forcertain families with prime power girth, and generalize the construction of Bray, Parker and Rowley that has yielded several of the smallest known (k, g)-graphs.
DOI : 10.26493/1855-3974.124.06d
Keywords: vertex-transitive graph, cage, degree, girth
@article{10_26493_1855_3974_124_06d,
     author = {Robert Jajcay and Jozef \v{S}ir\'a\v{n}},
     title = {Small vertex-transitive graphs of given degree and girth},
     journal = {Ars Mathematica Contemporanea},
     pages = {375--384},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.26493/1855-3974.124.06d},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.124.06d/}
}
TY  - JOUR
AU  - Robert Jajcay
AU  - Jozef Širáň
TI  - Small vertex-transitive graphs of given degree and girth
JO  - Ars Mathematica Contemporanea
PY  - 2011
SP  - 375
EP  - 384
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.124.06d/
DO  - 10.26493/1855-3974.124.06d
LA  - en
ID  - 10_26493_1855_3974_124_06d
ER  - 
%0 Journal Article
%A Robert Jajcay
%A Jozef Širáň
%T Small vertex-transitive graphs of given degree and girth
%J Ars Mathematica Contemporanea
%D 2011
%P 375-384
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.124.06d/
%R 10.26493/1855-3974.124.06d
%G en
%F 10_26493_1855_3974_124_06d
Robert Jajcay; Jozef Širáň. Small vertex-transitive graphs of given degree and girth. Ars Mathematica Contemporanea, Tome 4 (2011) no. 2, pp. 375-384. doi : 10.26493/1855-3974.124.06d. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.124.06d/

Cité par Sources :