Spectra and structural polynomials of graphs of relevance to the theory of molecular conduction
Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 379-408.

Voir la notice de l'article provenant de la source Ars Mathematica Contemporanea website

In chemistry and physics, distortivity of π-systems (stabilisation of bond-alternated structures) is an important factor in the calculation of geometric, energetic, and electronic properties of molecules via graph theoretical methods. We use the spectra of paths and cycles with alternating vertex and edge weights to obtain the eigenvalues and eigenvectors for a class of linear and cyclic ladders with alternating rung and backbone edge weights. We derive characteristic polynomials and other structural polynomials formed from the cofactors of the characteristic matrix for these graphs. We also obtain spectra and structural polynomials for ladders with flipped weights and/or Möbius topology. In all cases, the structural polynomials for the composite graphs are expressed in terms of products of polynomials for graphs of half order. This form of the expressions allows global deductions about the transmission spectra of molecular devices in the graph-theoretical theory of ballistic molecular conduction.
DOI : 10.26493/1855-3974.1226.a00
Keywords: Adjacency matrix, characteristic polynomial, molecular conduction, eigenvalues, weighted graphs
@article{10_26493_1855_3974_1226_a00,
     author = {Patrick W. Fowler and Barry T. Pickup and Irene Sciriha and Martha Borg},
     title = {Spectra and structural polynomials of graphs of relevance to the theory of molecular conduction},
     journal = {Ars Mathematica Contemporanea},
     pages = {379--408},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     doi = {10.26493/1855-3974.1226.a00},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1226.a00/}
}
TY  - JOUR
AU  - Patrick W. Fowler
AU  - Barry T. Pickup
AU  - Irene Sciriha
AU  - Martha Borg
TI  - Spectra and structural polynomials of graphs of relevance to the theory of molecular conduction
JO  - Ars Mathematica Contemporanea
PY  - 2017
SP  - 379
EP  - 408
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1226.a00/
DO  - 10.26493/1855-3974.1226.a00
LA  - en
ID  - 10_26493_1855_3974_1226_a00
ER  - 
%0 Journal Article
%A Patrick W. Fowler
%A Barry T. Pickup
%A Irene Sciriha
%A Martha Borg
%T Spectra and structural polynomials of graphs of relevance to the theory of molecular conduction
%J Ars Mathematica Contemporanea
%D 2017
%P 379-408
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1226.a00/
%R 10.26493/1855-3974.1226.a00
%G en
%F 10_26493_1855_3974_1226_a00
Patrick W. Fowler; Barry T. Pickup; Irene Sciriha; Martha Borg. Spectra and structural polynomials of graphs of relevance to the theory of molecular conduction. Ars Mathematica Contemporanea, Tome 13 (2017) no. 2, pp. 379-408. doi : 10.26493/1855-3974.1226.a00. http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1226.a00/

Cité par Sources :